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The dynamics of an infinitely long one-dimensional vortex and a swirl are compared 
with the dynamics of a semi-infinitely long trailing vortex and trailing swirl. With 
increasing distance, the change in the axial velocity difference between the core of the 
trailing vortex and the surrounding region causes radial convection and some associated 
axial convection of angular momentum. I n  laminar or turbulent trailing vortices, we 
show that under most conditions of interest this is the dominant mechanism for the 
decrease in the velocities of swirl in the core and corresponding growth of the core. On 
the basis of theoretical considerations and experimental observations, we show that 
the axial velocity difference between the core ofthe trailing vortex and the surrounding 
region is necessary for the sustenance of turbulence in the vortex core. A theory of 
the turbulent trailing vortex is developed on the basis of these mechanisms and the 
results are compared with our experimental observations. 

1. Introduction 
There are a variety of theories and views about unconfined and semi-infinitely or 

infinitely long turbulent swirls and vortices. These theories are neither confirmed nor 
refuted by experimental investigations, since very few experiments exist where the 
effects of initial conditions and extraneous influences have been minimized. We 
critically examine the assumptions underlying these theories and find them less viable 
than those advanced in this paper. The results of analysis based on physical processes 
proposed here are compared with the most recently available experiments. 

There are four distinct types of flow which are relevant here, namely a line swirl, 
line vortex, trailing swirl and truiling vortex. These flows together with their velocity, 
circulation and vorticity profiles are sketched in figure 1. The definitions given below 
prescribe some properties of velocity, circulation and vorticity profiles for each of the 
flows. 

A line suis.1 and line vortex are time-dependent infinitely long flows while a trailing 
swirl and trailing vortex are semi-infinitely long steady flows. 

Initially, in all these flows vorticity is assumed to be confined to a region of small 
radius and the moments of all orders of any vorticity component with respect to the 
z axis exist. The cores of these flows are regions where most of the vorticity is located. 
This paper is concerned with the growth of these cores or the spread of initially 
concentrated vorticity owing to  viscous and turbulent processes. 

A line swirl is an infinitely long flow which has a single velocity component uo(r, t ) ,  
where r is the radial distance from the swirl axis z ,  the subscript 0 refers to the angular 
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FIQVRE 1. Sketch of the four flows and their profiles. 

co-ordinate, and t is the time. Its angular momentum pM per unit axial distance is 
constant and independent of time, where 

and p is the density of the fluid. A prime, as in ui, will be used to denote the fluctuating 
part of a quantity. Otherwise the symbol represents either a quantity in a laminar 
flow or its mean value in a turbulent flow. 

The second flow is an infinitely long line vortex with one velocity component ug(r, t )  
such that u g  = I',,/2m for large r with zero velocity at  r = 0. Its angular momentum 
per unit distance along the swirl axis is infinite and its rate of change of angular 
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momentum is finite and depends on the viscosity. It is further assumed that ar2/ar > 0, 
where I' = 2nru,. 

The third flow is a trailing sudrl with three velocity components u,(r, z ) ,  u&r, z )  and 
u,(r, z ) ,  where z is the distance along the axis of the trailing swirl measured from its 
origin. It may be produced by rotating vanes with the axis of rotation parallel to the 
prevailing uniform steady flow u,. The vanes may add to or absorb some axial momen- 
tum of the prevailing flow. Thus we have a swirl which may have a coaxial jet or a 
wake. The flux of angular momentum 

A = 2np uZ(r,z)u,(r,z)r2dr Sum 
is independent of z. We assume that, as r --f m, u, = 0, u, = uo, and ug is bounded and 
approaches zero rapidly enough for the above integral to  exist. See the fourth para- 
graph from the beginning of this section. 

The fourth flow is a trailing vortex produced at the tip of a semi-infinite lifting wing 
in the presence of a prevailing mean flow. The trailing vortex bears some similarity to 
a trailing swirl in having three velocity components, but with the important difference 
that, as r +a, u, = 0, uo = r0/2nr and u, = uo, where r0 is the total circulation. The 
flux of angular momentum is infinite, but its rate of change 

(3) 

is finite and depends on z. It is further assumed that ar2/ar  > 0. 
In  analysing the third and fourth flows, all previous investigators have invariably 

assumed that u, may be neglected, u, = uo and z is replaced by tug, thus reducing the 
trailing swirl to a line swirl and the trailing vortex to a line vortex. We indicate below 
and subsequently show in detail that  this approximation is invalid. 

As a trailing swirl or a trailing vortex develops, the swirl velocity uo decreases with 
increasing downstream distance z .  Since the pressure at large r is constant, near the 
axis of a swirl or a vortex this leads to  ap/az > 0,  where p is the pressure. This implies 
divergence of the cores of these flows and an axial velocity difference between the cores 
and the surrounding regions, which has three important effects on the dynamics of 
these trailing flows which are absent in a line swirl and a line vortex. 

(i) Linear and nonlinear stability analyses (Pberoi, Chow & Narain 1972; Narain 
Pt Uberoi 1973) show that a difference in axial velocity between the core and the 
surroundings destabilizes swirling flows which otherwise would be stable. 

(ii) There may be significant and sometimes dominant radial and associated axial 
convection of angular momentum. 

(iii) The range of downstream distances over which dynamic self-similarity exists 
may be limited. 

The importance of these effects decreases with decreasing rate of spread of these 
flows. However, in the study of trailing flows with swirl the emphasis is on their rates 
of growth rather than on the final stages where they have practically ceased to grow. 
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2. Laminar line swirl, line vortex and their stabilities 
It is important to consider the dynamics and stability of the basic laminar flow, 

a part of which may become turbulent. In  swirling flows the basic laminar flow may 
enhance, diminish or even quench turbulence in its interior. These, sometimes strong, 
stabilizing or destabilizing effects must be considered when postulating turbulent 
stresses in these flows. 

The equation of motion for a line swirl or a line vortex is 

where the viscous stress 7 = pvr a(u, r- I)/& and v is the kinematic viscosity. 
A swirl of finite M diffuses out owing to viscosity and shares its angular momentum 

with the surrounding fluid, which is set into motion. I ts  Reynolds number is ( M / t ) h / v .  
A known self-similar swirl is 

= 2nru - ( exp ( - r2/4vt). ,-2vt 4vt ( 5 )  

In  a line vortex u, N r o / 2 ~ r  for r + co and the rate of change of angular momentum 
is determined from (4); thus 

The flow has only one non-zero velocity component u,(r,t) and hence there is no 
convection of angular momentum. The above rate of change of angular momentum 
of the entire line-vortex flow consisting of the core and the nearly potential sur- 
rounding flow is independent of the detailed distribution of the vorticity or u, in the 
interior of the vortex. It depends only on the fact that u, II r0/2nr for r+m. I n  
other words, this rate depends only on the viscous torque at r+m. If we assume a 
finite v then there are stresses but no net force on a fluid element in the potential flow 
surrounding the core where most of the vorticity resides. The angular momentum is 
lost from the interior of the vortex through the potential-flow region to the region 
r + x. The core over which most, say 95 OI,,, of the total vorticity or r0 is distributed 
grows and so does its angular momentum. This is due to infinite angular momentum 
surrounding any finite though growing interior region. The Reynolds number is r0/v. 

A known self-similar solution for the line vortex is 

I' = Bnru, = r0[l -exp ( - r2 /4v t ) ] .  (7) 

We may combine (5) and (7)  to get a vortex-swirl combination 

r = ro [ 1 + (" mrO (2) 4vt - 1) exp ( - rz/4vt)]  . 

Equation (7)  shows that the circulation in a line vortex increases monotonically 
with radius, reaching a constant value r0. The total vorticity in a swirl is zero and I' 
increases and then decreases to zero for large r .  In  the example of a line vortex-swirl 
given by (8)) overshoots r0, then decreases to r0 for r + co. This overshoot decreases 
and becomes relatively insignificant with time and may be considered as a decaying 
'initial ' disturbance. 
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This is a special case of a general result. If the initial vorticity is axisymmetric and 
is distributed over a finite area around the origin then its subsequent distribution 
can be found from (4). After a long time the vorticity and velocity distributions will 
have forms corresponding to a total vorticity originally a t  the origin, any initial 
vorticity distribution of opposite sign and zero total value having no significant 
influence. If, however, the total vorticity is zero, then the initial distribution of the 
vorticity determines the subsequent state of the vorticity and the velocity. 

We may look a t  the situation from the point of view of dynamics. The angular 
momentum associated with a finite total vorticity is infinite but the angular momen- 
tum is finite if the distribution of vorticity is such that the total vorticity or I?, is zero. 
As time progresses the former will dominate the latter. We are assuming that the 
vorticity is initially concentrated near the axis. 

These well-known results are presented to contrast some properties of laminar flows 
with corresponding properties of the flows with the same overall parameters but in a 
turbulent state. For example, in a laminar line vortex -swirl the dynamics of any 
region of overshoot where I? > I?,-, become in time unimportant to the dynamics of the 
main vortex, while in a turbulent line vortex-swirl Govindaraju & Saffman (1971) 
assert that a t  high Reynolds numbers the overshoot (I? > I?,) is the main growth 
mechanism of the turbulent vortex. 

The virtual origins of the time t for a line swirl and line vortex may not be the same. 
This becomes insignificant as t becomes large. However, for both small and large t we 
define a line vortex -swirl as a flow which behaves like a vortex for sufficiently large 
r and for which d r 2 / d r  < 0 for some finite range of r .  This slight generalization is 
necessary for the purpose a t  hand, which is to  study the stability and turbulence in 
such flows. 

An important criterion, based on analysis assuming inviscid flow, for the stability 
of swirling flows with one velocity component uo(r,  t )  is (Rayleigh 1916; Chandrasekhar 
1961, p. 284) 

A line vortex is stable a t  all times. A swirl is unstable. A line vortex -swirl is unstable 
and its interior may become turbulent a t  a sufficiently high Reynolds number. 
However, as time progresses the flow will tend to stabilize and production of tur- 
bulence already created will decay owing to viscosity. In  practice, flows approximating 
a line vortex are used to stabilize unstable fluid configurations such as a vortex- 
stabilized electric arc (Chow & Vberoi 1972). Experiments lend support to the above 
criterion (9) without regard to any limitations of the stability theories cited. 

In  the case in which there is an initial thin shear layer such that uo changes rapidly 
or discontinuously, instabilities and turbulence may develop in this unstable shear 
layer. However, in time the shear layer will be smoothed out. The turbulence will 
be in the form of an initial disturbance and will not be sustained just as for the case 
6r2,far < 0 discussed above. 

We have made some simple observations to check the stability considerations. 
Water was injected tangentially all along the inner wall of a transparent vertical 
cylindrical vessel 30cm in diameter and 50cm long which had a central drain in its 
flat bottom and was nearly full of water. After the ‘bathtub ’ vortex had been set up, 
the fluid in the centre was made turbulent by stirring i t  randomly or by spinning a 
0.6 cm diameter rod spanning the entire length of the cylinder in a direction the same 

d r 2 / d r  > 0. (9) 
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as or opposite to that of the main vortex. The turbulent flow was made visible by 
painting the stirrer or the rod with water-soluble ink. Care was taken to limit the 
disturbance to a short time period, so as to confine the initial disturbance to a cylindrical 
region about 3 cm in diameter, which may be considered small in size compared with 
the main vortex. The Reynolds number r 0 / v  of the vortex was about lo3. The drainage 
was reduced after each repetition of the experiment just described, there being no 
drainage in the last repetition of the experiment. The reduction of the drainage was 
intended to approximate better a flow with one velocity component u,(r,t) by a 
‘bathtub ’ vortex. In  every case the initial turbulence decayed and was not sustained 
at  the expense of the energy of the relatively slowly changing main motion of the 
vortex. 

In another experiment, at P0/v  = 7.8 x lo4, we have made detailedvelocity measure- 
ments in the trailing vortex of a wing of laminar-flow airfoil. Near the wing tip and in 
the vortex core u, exceeded uo, the prevailing velocity, and the core flow was turbulent. 
Some distance downstream u, N uo and hence the trailing vortex flow was almost a 
line vortex: no substantial axial velocity differences existed between the core and the 
surrounding fluid. The existing turbulence in the core mostly disappeared. Further 
downstream u, c uo and laminar unstable modes appeared which were due to insta- 
bilities caused by the velocity deficit which now appeared (Singh & Vberoi 1976). 
This further substantiates our claim that turbulence cannot be sustained in a line 
vortex (i.e. without a difference between the axial velocities of the core and the 
surrounding fluid) no matter how large the Reynolds number. 

3. Turbulent line swirl, line vortex and their combination 
In $ 1 we have defined the four flows and in $ 2  we have considered the dynamics 

and instabilities of two of these flows, namely a line swirl and line vortex. We now 
consider the possible turbulent state of these two flows. 

A line swirl is unstable according to the criterion (9) based on the assumption of an 
inviscid fluid. Thus at sufficiently high Reynolds numbers it should become unstable, 
which is consistent with experience. One can use hypotheses about the turbulent shear 
in a swirl which are standard in theories of turbulent free shear flows to develop the 
theory for the turbulent line swirl (Oberoi 1977a). 

A line vortex is stable unless it has a swirl superimposed on it; i.e. there is a finite 
radial region where d r 2 / d r  c 0. If a swirl is superimposed on a line vortex, turbulence 
will develop in the form of an initial disturbance and decay at a faster rate than the 
asymptotic rate of growth of the vortex core. Thus, in contrast to a line swirl, we 
cannot use standard shear-flow hypotheses for a line vortex or a line swirl-vortex 
combination. However, there are several theories of sustained turbulence in a line 
vortex. We show below that the results obtained by other investigators who applied 
standard a,ssumptions for free turbulent shear flow to the turbulent line vortex are 
erroneous. They assumed that there exists three-dimensional turbulence. However 
there is only one mean velocity component uo(r, t ) .  The equation governing a turbulent 
line swirl, a turbulent line vortex (assuming that it exists) or their combination is 
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where -pu:ui is the turbulent, stress, which is confined to  a finite central core and 
vanishesoutside it. This is consistent with the fact that  for all known shear flows without 
constraining boundaries the turbulence is always confined to a finite domain across 
the flow and is separated from the non-turbulent flow by an irreguIar sharp boundary. 
Turbulence has never been known to diffuse out to  infinity across the free shear flows. 

Consider the total rate of change of angular momentum of a turbulent line swirl- 
vortex combination or a line vortex (assuming that it exists) : 

- 

where we have assumed that uo _N rO/277r for r -+ (;o and that the turbulent shear is 
confined to a finite core and does not affect the ultimate transfer of angular momentum 
through the potential flow surrounding the vortex core. See also the discussion 
preceding (6). 

Squire (1965) was the first to consider a vortex with a turbulent core. I n  effect he 
assumed that ‘turbulent ’ kinematic viscosity is 

vt = ar,, (12) 

where a is a constant. The solution is given by (7 )  with v replaced by ar,. Since the 
turbulence is confined to a finite radius, vt should vanish as r + OG. Squire’s assumption 
allows far too much angular momentmm to escape to infinity; the correct amount is 
determined by (1 1). 

We may try to save Squire’s solution by stipulating that i t  is valid only for a vortex 
in the presence of uniform atmospheric turbulence, where a constant vt may be used. 
However there are serious difficulties with this artifice. A constant turbulent kine- 
matic viscosity due to atmospheric turbulence has nothing to  do with r0, which is 
associated with the vortex. Let the atmospheric turbulence be strong enough to 
interact with the vortex. I n  the potential part of the vortex, owing to the spatially 
varying rate of strain, the interaction would vary spatially and with time. Con- 
sequently vt cannot be assumed constant. Further, we cannot assume that the entire 
vortex interacts significantly with the atmospheric turbulence while the outer flow is 
still potential with uo = r0/%-r for all time. 

Hoffman & Joubert (1963) considered radial transfer of angular momentum in the 
turbulent core of a line vortex. Using certain assumptions, they concluded that the 
circulation varies logarithmically with radial distance in the region of maximum ug. 
They failed to show how the momentum is transferred to  large radial distances; this 
transfer is determined by viscosity and is given by (1 1). 

The total rate of change of angular momentum is due to viscosity and cannot 
exceed that given by (1 1). If we insist on growth of the core, i.e. a decrease of its swirl 
velocities faster than that caused by viscosity, then the outer flow must speed up, 
since the total angular momentum must be conserved except for a small loss due to 
viscosity. It follows that the circulation in the region of potential flow where the flow 
speeds up must exceed or overshoot ro. Various elaborate theories have been developed 
to ‘prove’ the existence of a circulation overshoot. In  fact, the overshoot is a direct 
consequence of the insistence mentioned above, which may take many different forms. 

Govindaraju & Saffmann (1971) assume that r2u:u,j and ruo are functions of r/th, 
in which case (10) becomes an ordinary differential equation. The insistence is contained 

- 
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in this functional dependence; i.e. the maximum value of ue must decrease and the 
core size must increase faster than they would owing to viscosity. 

Macagno & Macagno (1975) assume that if e is the mean rate of strain then the 

(13) 
turbulent kinematic viscosity is 

where a and /? may vary with space and time but are taken to be constant in their 
analysis. The quantity a here is not related to that in ( 1 2 ) .  Equation (13) is supposed 
to include vortex-generated and atmospheric turbulence. In accordance with the 
above discussion of Squire’s work a must equal u. Equation (13) allows turbulent 
stresses and hence production of turbulence in the outer potential flow, where E is 
finite. 

The theories discussed here and other such theories were based on the unjustifiable 
belief that a line vortex is equivalent to a trailing vortex, where t is replaced by 
z/uo. The results of such analyses of line vortices were compared with experimental 
observations of trailing vortices. 

Measured data on trailing vortices have been fitted to Squire’s solution for a line 
vortex, although the value of the constant 01 varies from case to case (Rose & Dee 
1963; McCormick, Tangler & Scheme1 1968). Owen (1970) has given an explanation 
for the variations of a with r0/u. This does not remove the fundamental objections 
raised above. 

V t  = a+&&/, 

4. Laminar trailing swirl, trailing vortex and their instabilities 
The equation governing Ug in these flows is 

a a - (uo + u,) u,r2 + - (u,u,r2) = u- r3 - 
8.2 ar :r :r (:) 9 

where uo is the constant prevailing velocity along the swirl axis and now u, is the 
deviation of the axial velocity from uo. In  the core of these flows the swirl velocity u, 
decreases with increasing downstream distance z and therefore i?p/az > 0. The flow 
in the core diverges, causing significant radial and some associated axial convection 
of angular momentum. We illustrate this by examining the total rate of change of 
angular momentum in a trailing vortex. Integrating (14), we have 

2nu,/0w f u, r2dr = - 2n - u, u, r2dr - [u, r ~ , . - . , ~  ro - 2Vr0. (15) s,” :z convection diffusion 

In  deriving (15) we have assumed that u, r = r3 a(ue r--l)/ar = 0 at r = 0 and u, = ro/2nr 
as r + 00, so that 2 7 r ~ r 3 a ( ~ ,  r-l)/8r -+ - 2ur0 as r -+ 00. 

From the continuity equation, we have 

Using (16) in (15), we get 

convection 

We have assumed that, as r + 03, u,+ 0 rapidly enough for the integrals in (15)-( 17) 
to exist. However, we have not assumed that u, < uo. Batchelor (1964) has calculated 
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axial flow in a trailing vortex, neglecting radial flow. He neglected terms involving 
u, and u, compared with that involving uo in (14), which becomes 

which replaces a trailing vortex with a line vortex. The velocity u, is given by (7 )  
with t replaced by z/uo. Using this ug, the pressure is calculated from the approximate 
equation 

and 
This leads to 

where 

5 = u0r2/4vz .  

The axial velocity u, is calculated from the above pressure gradient and the equation 

ap (::z ,‘;A a 
az az 

puo- u, = -- +pv -- +-- u,. (24) 

Batchelor’s solution for u, has been criticized for non-uniqueness by Tam ( 1  973), 
whose argument has in turn been criticized by Herron (1974). We wish to avoid these 
controversies here since our main interest is to examine the range of validity of the 
approximations used in deriving the above equations rather than solving them. 
These difficulties have been examined by us and their resolution is given elsewhere 
(Vberoi 1978; Uberoi, Shivamoggi & Chen 1979). 

We make a few remarks which are relevant to our purpose here. The diffusion 
equation (24), together with the distribution of sources given by (22), has a unique 
solution provided that we specify the initial uz(r,zo). No one has noticed that as a 
result of the approximations and simplifications used the integral with respect to z 
and r of the sources given by (22) is infinite owing to a singularity at z = 0. Hence 
initial conditions cannot be specified at zo = 0, and no solution exists which is 
independent of zo. 

Batchelor’s formulation neglects the convection of angular momentum in (18). 
Here our aim is to estimate this neglect, relative to diffusion, which is retained; see 
(15) and (17) .  This can be done from the governing equations without explicitly 
solving for u,. 

Let us assume that at zo 

uz(r,zo) 0. (25) 

Owing to the pressure gradient u, will, of course, change. This is a reasonable initial 
condition since our main interest here is the change in u, due to the prescribed pressure 
gradient . 
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The radial convection and associated axial convection of angular momentum at 
z, are given by ( 17) ; thus 

where we have made use of (20)-( 25) and the value of the definite integral is approxi- 
mately 4. Using (26) and (1 7), the ratio is given by the expression 

convection/diffusion N ( r o / v )  ( l?,/647rz0 u,) E (Po/”) (c/4O0z0), (27) 

where we have assumed that the trailing vortex is generated by a semi-infinite wing 
of chord c and that r0 = &uo. Since the vortex is essentially a high Reynolds number 
phenomenon, r 0 / v  3 1 and zo/c must be large to make this ratio much smaller than 
unity. In  general, radial and associated axial convection of angular momentum 
cannot be neglected. 

The above procedure allows us to estimate the neglected convection of angular 
momentum only a t  zo and for the specific initial condition given by (25).  However, at 
any station z we can calculate a significant part, namely the radial flow of angular 
momentum ro(urr)t-ta3, of the neglected convection by using the continuity equation 
and integrating (24) with respect to r ;  see (15)-( 17). The ratio of radial flux of angular 
momentum to the diffusion of angular momentum at any station z is twice that given 
by (26). Therefore (26) may be taken as a reasonable estimate of the terms neglected 
in (1 8) at any station by replacing zo by z. 

Moore & Saffman (1973) have calculated the axial velocity in the core of a vortex 
for which at 2 = 0 and u, = Pr-n, where P is a constant and 0 < n c 1. They also 
neglected radial and associated axial convection of angular momentum. Using their 
axial velocity, we find that the requirement for neglecting these is that 

P”uf (E)n g 1. 

They were concerned with the axial velocity during vortex-sheet roll-up near the 
wing or at small z, where the flow is essentially three-dimensional and u, cannot be 
neglected. The condition (28) may be satisfied a t  large z, but then the vortex sheet 
is rolled up, which corresponds to the spreading of the vorticity in the core of a line 
vortex, which we are considering here. 

The present discussion shows that, for those distances from the origin of interest 
where the vortex is changing significantly, the dominant mechanism for a decrease 
in the swirl velocities in the core of a laminar trailing vortex is radial and associated 
axial convection of angular momentum. 

Another important effect of axial flow or a difference in u, between the core and the 
surroundings is that a flow becomes unstable which was otherwise stable according 
to criterion (9) (Uberoi et al. 1972). 

A trailing vortex is further destabilized when a trailing swirl is added to it such 
that there is a finite radial distance r for which dr2/dr c 0, in the same manner as for 
a line vortex. 
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5. Turbulent trailing vortex 

r (= %rue) as 
On dimensional grounds we may write the functional dependence of the circulation 

r/r, = ~ ( ~ u , / r , ,  z u o / r 0 ;  r0/v). (29 )  

The equation governing ug under the approximation of a slender vortex core is 

ar r 
a 
- az (u,+uz)u,r2 = 

Integrating this equation, we have 

convection 

where we have assumed that turbulence in the trailing vortex vanishes as r -+ 00 and 
have made use of the continuity equation. See also the discussion preceding (16 )  and 
( 1 7 ) .  It is well known that in all flows without constraining boundaries the turbulent 
fluid is separated from non-turbulent fluid by a sharp irregular boundary. Velocity 
fluctuations decay very rapidly as we move from turbulent into non-turbulent fluid. 
Further, measurements (Singh 1974; Uberoi 1974) in a trailing vortex show that 
r(G)S and r ( G ) S  both vanish as r -+ co. Hence r2uT.o -+ 0 as r -+ 00. We are concerned 
here with the spread of turbulence which is initially concentrated near the axis of the 
trailing vortex. I n  all turbulent flows experimentally investigated thus far, the 
irregular front separating the turbulent from the non-turbulent fluid propagates a t  a 
finite rate rather than diffusing to infinity. The vanishing of r2ui ui is consistent with all 
known experimental facts about the trailing vortex and turbulent flows in general. 
Assuming that r2ui ui is finite as r --f 00 would lead us to the same difficulty as in Squire’s 
work (1965).  Angular momentum far in excess of that allowed by laminar viscosity 
of the fluid would escape to  infinity owing to turbulent stresses. 

It follows from (32)  that  the radial and associated axial convection of angular 
momentum are important if the turbulent vortex grows faster than the laminar 
vortex and there is no overshoot, or r < ro. The experiments determine quantitatively 
the importance of convection relative to diffusion. 

The velocities uo and u, in a turbulent trailing vortex behind an airfoil have been 
measured by Singh (1974) and Uberoi (1974) at r o / v  = 2.1 x 104. Unfortunately, the 
convection of angular momentum cannot be accurately calculated from the measured 
u,. We have calculated the first and the last terms in (32 )  using the measured uo and 
thus determined that diffusion is about 1 yo of the convection of angular momentum. 
Therefore the dynamics of a turbulent trailing vortex are independent of ro/v a t  
least a t  the Reynolds number of the experiment, and for the range of u , z / v  covered 
in our experiments just quoted. In  the literature the effect of slowly decaying and 
different initial conditions in different experiments may have been confused with the 
effect of Reynolds number on the structure of these vortices; see, for example, 

- 

- 
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FIGURE 2.  C’oinpitrisoii of the theory with experiments. - ., a = 150, b = 10; 0 ,  z / c  = 40; 
~ , z / c = 5 0 ; O , t / c =  6 0 ; c , z / c =  7 0 ; d , z / c  = S O ; V , z , c =  85.usisamaximuinatr=r,. 

McCormick et al. (1968). The terms involving v may be neglected in (29)- .(32) (Vberoi 
1977b); thus 

r/r0 = y(ru0P0, Zuolro) (33) 

I n  order to proceed further we could write down the equations governing u, and u, 
and assume enough relations among t’he independent variables so that their number 
equals the number of equations. Instead we propose an elemental theory which 
incorporates the mechanism of vortex changes discussed above. 

We look for a solution such that r/r0 is a func,tion of the single variable 

We assume that the total radial and associated axial convection of angular momentum 

The terms on the right-hand side of (34) are significant only in the core, where r - ro 
is significantly different from zero. The sign of these terms should not depend on the 
sign of I’ - ro and they should have proper dependence on r as r + 0. On these bases 
and in the light of the discussion of the physical phenomena we propose that 

where a and b are constants. The fador exp by  recognizes the fact that t,he turbulent 
core a t  any z is of finite size and (37) should rapidly approach zero as we go from the 
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turbulent core to the surrounding non-turbulent fluid. Vsing (37), the governing 
equation (34) becomes 

m 2 8 
uo- ij, rr = -nu (2) (r - ro)2z exp (by) 

and for m = 1 -n we have 

dy 'dy == a( i  -Y)2exp (bq ) ,  = r/ro. 
The solution is 

(39) 

This expression is compared with observations (Singh 1974; Uberoi 1974) in figure 2, 
where n = 1, a = 150 and b = 10. A very brief outline of the derivation of the above 
equation was published earlier (Vberoi 1 9 7 7 ~ ) .  

6. Final stages in vortex decay 
If m > 0 in (36) then relative to diffusion the importance of convection of angular 

momentum decreases as z +a. Independent of the theory proposed here, let us assume 
that the axial velocity difference u, d uo in the sense that the convection is negligible 
compared with the diffusion and the core size continues to increase a t  least a t  the 
rate given by the diffusion as z PX. We claim that under these conditions the flow 
becomes stable and no sustained turbulence is possible. See 3 2 above. 

In  studies of laminar and turbulent line vortices self-similarity is often assumed 
(Squire 1965; Govindaraju & Saffman 1971). Consider the following form: 

Integrating (10) and using (41), we have 

It follows that n 
kinetic energy of the mean motion becomes 

1 and c N v. Using (41), the expression for the rate of change of the 

It may be shown that rg,/8nt is the rate of viscous dissipation of kinetic energy of a 
laminar line vortex given by (7).  I n  a line vortex with a turbulent core, the rate of 
decrease of kinetic energy should exceed that in a laminar line vortex with the same 
overall parameters. Hence, even if a turbulent line vortex exists, i t  cannot havethe 
form given by (41). We may say that the virtual origins o f t  are different for laminar 
and turbulent line vortices. However, this becomes unimportant as t --f cc. 

The beginning of the final period of vortex and its dependence on initial conditions 
and the Reynolds number need further experimental study. 
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7. Discussion 
We have shown that all previous theories of the decay of trailing vortices are based 

on assumptions which are untenable under most conditions of interest. We have found 
the dominant physical phenomena of radial and associated axial convection of angular 
momentum and the role of the axial velocity in sustaining turbulence in the vortex 
core. 

A theory for a turbulent trailing vortex was presented which satisfies the requirement 
of turbulent theories. We proposed an expression for the dominant physical phenomena 
which is consistent with the basic equations, and the results agree with observations. 

A reasonably complete discussion was presented because of confusion in this field 
and to provide suggestions for further experimental work in turbulent vortices. It 
is necessary to conduct more extensive experiments to determine accurately the values 
of m and n. Once we have accurate measurements of u, we may use the following 
relation [obtained from (37)] to determine m independently: 

In  the past there have been no guiding physical processes or theories which could 
help to evaluate various devices and methods for ameliorat'ion of the vortex-wake 
problem and its influence on the operation of aeroplanes, which may interact with 
trailing vortices from other aeroplanes. It is hoped that t'he present theory and 
discussion of physical phenomena will provide such guidance, 

The author is grateful for stimulating discussions with H. W. Emmons, F. Aber- 
nathy and G. F. Carrier of Harvard University and P. I. Singh of AVCO Research 
Corporation. This research was supported by a University of Colorado Faculty 
Fellowship and the Office of Naval Research-Project SQUID. 
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